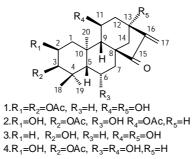
Two New Diterpenoids from Isodon rubescens


Bao Lin LI, Shao Nong CHEN, Zhi Xian SHI, Xuan TIAN and Yao Zu CHEN*

¹National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000
²Shanghai Institute of Materia Medica, Academia Sinica, Shanghai 200031
³Northwest Plateau Institute of Biology, Academia Sinica, Xining 810001

Abstract: Two new diterpenoids taibairubescensin A (1) and B (2) have been isolated from *Isodon rubescens*. The structures of compound 1 and 2 were elucidated as 2β , 3β -diacetoxy-11 β ,13 α -dihydroxy-*ent*-kaur-16-en-15-one (1) and 3β ,11 β -diacetoxy-2 β , 6α -dihydroxy-*ent*-kaur-16-en-15-one (2) on the basis of spectroscopic analysis.

Keywords: Isodon rubescens, taibairubescensin A, taibairubescensin B, ent-kaurene diterpenoids.

In order to further study on minor diterpenoid constituents of *Isodon rubescens*, we reinvestigated this species, which was collected in Taibai mountain, Shaanxi Province. Two new diterpenoids, taibairubescensins A (1) and B (2), were isolated. In this paper, we present the structure elucidation of these two new diterpenoids.

Taibairubescensin A (1), $C_{24}H_{34}O_7$ (FABMS m/z 435[M+1]⁺), an amorphous powder, showed UV and IR absorption bands for the existence of hydroxyl, acetoxyl and a five-membered ring ketone conjugated with an *exo*-methylene functions (240.5nm; 3468, 1740, 1732 and 1649 cm⁻¹). The ¹³C-NMR (**Table 1**) and DEPT spectra of **1** showed signals for this compound with $5 \times CH_3$, $5 \times CH_2$, $5 \times CH$, $4 \times C$, two olefinic carbons, one ketonic carbon and two ester carbonyl carbons. These data suggested that **1** possessed a basic skeleton of *ent*-kaur-16-en-15-one with two acetoxyls and two hydroxyls. The ¹H-, ¹³C-NMR data of **1** were very similar to those of deacetylisodopharicin A (**3**)¹ except for one more acetyl groups. Comparison of their Bao Lin LI et al.

¹³C-NMR data indicated that the difference between 1 and 3 was only in A ring. This ment that two hydroxyls were at C-11 β and C-13 α , and two acetoxyls were in A ring, respectively, in compound 1. In the ¹H-¹H COSY spectrum of 1, the signal at δ 4.98 (1H, d, J = 2.6 Hz, H-3 α) showed correlation with the signal at δ 5.24 (1H, ddd, J = 12.3, 2.6,3.9 Hz, H-2 α), the latter showed correlation with both signals at δ 1.59 (1H, dd, J = 11.9, 3.9 Hz, H-1 α) and δ 1.91 (1H, dd, J = 11.9, 12.3 Hz, H-1 β). Thus two acetoxyl groups should be located at the C-3 and C-2 positions, respectively. The relative configurations were established as 2β -OAc and 3β -OAc by considering the coupling constants of H-2 and H-3. These cases were further confirmed by NOESY spectrum of 1. Therefore, compound 1 should be elucidated as 2β , 3β -diacetoxy-11 β , 13α -dihydroxy-*ent*-kaur-16-en-15-one.

Taibairubescensin B (2), C₂₄H₃₄O₇ [HRFABMS(pos.) *m/z*: 435.2364[M+1], calc. 435.2382], an amorphous powder, showed UV and IR absorption bands for the existence of hydroxyl and a five-membered ring ketone conjugated with an exo-methylene functions (243.5nm; 3473, 1738, 1648 cm⁻¹). The ¹³C-NMR (**Table 1**) and DEPT spectra of 2 clearly indicated that the compound 2 was an ent-kaurene diterpenoid derivative with two acetoxyl groups and two hydroxyl groups. The ¹³C-NMR spectrum of 2, compared with that of Lusanrubescensin D $(4)^2$, differed from that of 4 only in chemical shift at C-11. The chemical shift of the C-11 is δ 65.1 in 4, but it is δ 68.5 in 2. This fact indicated that the acetoxyl group at the C-11 β position in 2 had replaced the hydroxyl group in 4. These assignments were further confirmed by ${}^{1}H{}^{-1}H$ COSY and HMBC spectra of 2. Thus, taibairubescensin (2)established В was as 3β ,11 β -diacetoxy- 2β , 6α -dihydroxy-*ent*-kaur-16-en-15-one.

Table 1. ¹³C NMR data* for 1 and 2

Carbon	1	2	Carbon	1	2	Carbon	1	2	Carbon	1	2
1	37.9 t	43.2t	7	32.5 t	41.1t	13	75.3 s	37.0d	19	21.3q	22.6q
2	67.5d	65.0d	8	52.8 s	48.4s	14	44.9 t	37.7 t	20	18.3q	19.9q
3	76.6d	80.9d	9	61.9d	62.9d	15	207.3 s	208.7s	OAc	170.4s	171.9s
4	38.1s	38.4s	10	39.6 s	39.4s	16	151.9 s	149.1s		170.6s	169.8s
5	48.6d	48.4d	11	66.7d	68.5d	17	113.7 t	113.7t		20.9q	21.1q
6	17.6 t	65.8d	12	48.2 t	373t	18	27.8q	28.2q		21.0q	21.6q

*Recorded in CDCl₃; chemical shift values reported as δ values (ppm) from TMS at 100.6MHz.

References

- Z. M. Wang, P. Y. Cheng, Z. D. Min, Q. T. Zheng, C. Y. Wu, M. J. Xu, Y. W. Gue, M. Mizuno, M. Iinuma and T. Tanaka. *Phytochemistry*, **1991**, *30*(11), 3699.
- 2. C. Q. Qin, F. Q. Li, H. L. Li, H. D. Sun and Z. W. Lin. Acta Botanica Yunnanica, **1986**, 8(1), 99.

Received 27 May 1999 Revised 8 November 1999